
 

 

 

An Analytical Approach to Polyominoes and a solution to the  

Goldbach conjecture  

By 

Aziz Sahraei 

asahraey@gmail.com , asahraey@hotmail.com 

 

 

ABSTRACT. Always, when viewing papers whose writers show polyominoes graphically, this question crossed 

my mind, are there any equations which may be given to avoid the need for drawings? Polyominoes are 

sometimes called by the number of faces (like triomeno or tetraomino). In this paper, I try to formulate 

polyomino shapes and establish a correspondence between them and polynominals. About the final part 

where I refer to the Goldbach conjecture, I must to say that my aim is to give a geometric representation of 

the proof of this conjecture so that if a special chain of subsets such as, 𝐼0 ⊂ 𝐼1 ⊂ ⋯ ⊂ 𝐼𝑛   exists in a set Ω, 

where both ends of the chain include trivial subsets, and if the conjecture be true for at least one arbitrary 

member of this chain, then it will be true for all the other members of the chain.  

 

 

1. Introduction 

A polyomino is a set of unit squares connected to each other edge-to-edge or an edge -

connected union of cells in the planar square lattice. Polyominoes were studied for the first 

time by Solomon W. Golomb (1953) and the name (polyominoes) was invented by him. His 

publication on them, attracted others, and the ideas relating to them began to appear in the 

Scientific American journal. Several questions about them remained unsolved, leaving 

challenging problems for combination geometry. In this paper, we make use of their 

characters to solve Goldbach's conjecture. Since Mathematical Induction is required for the 

proof, the numerical structure must be compatible with the structure of the set of 

polyominoes in such a way that the existing definitions in the numerical structure represent 

properties within the range of the polyominoes. In addition, an algebraic structure must be 

defined on the polyominoes.  
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2. Analytical approach 

For writing the equation of a polyomino, some definitions are necessary: 

Definition 2.1. If P be a polyomino then we call the rectangular created by the extension of 

any four outer edges of P cells (in any direction) as a convex hull of P, namely,  ABCD is the 

convex hull of the polyomino which shows with the red squares. 

 

Definition 2.2.For any polyomino like   , the squares number of   is called the cardinal of 

 and will be shown by Ω . Also if there exists a pattern structure (formation) of  like Ω1 

where in this new formation, the convex hull of Ω1 coincides with the Ω1 itself, and squares 

of the new arrangement has a rectangular form, then we call    a convex polyomino. Like 

𝑘1 that can be arranged as 𝑘2: 

 

Any polyomino that isn't convex is called a concavo polyomino. 

Now for writing the equation of the above polyomino (ABCD), we put its convex hull in the 

coordinate axis plane in the manner that the D sits on the origin, DC on the X axis and DA on 

the Y axis. We can see that in its convex hull, the squares that belong to the polyomino are 

full and the others which belong to the convex hull are empty. We take any full square equal 

to 1 and any empty square equal to 0 and then we can get each column of the convex hull 

as a representation of a number in the base of 2 .Then the first row of the convex hull can 

show the20, the second row 21 and the third 22 etc. Thus for ABCD, the first column has 

only one full square at 21 position so this column will represent 2, the second column has 

full squares at 20, 21 and 22  position. Then this column is a representation of 20 + 21 +

22 = 6 and also, the third column has only one full square at 22 .So this reveals 4. 

Furthermore we can show the first column by 𝑋1  , the second column by 𝑋2  and the third 

column by 𝑋3  etc. Now if we call this polyomino by Ω , then we can introduce its equation 



by Ω = 2𝑋1 + 7𝑋2 + 4𝑋3  .The number of variables shows the column of squares and 

writing each variable coefficient in the binary expansion will tell us which square is full and 

which one is empty. We can shortly demonstrate this process by the following picture: 

 

 

 

Similarly, we can write any polyomino equation by this method. Now, we try putting an 

algebraic system on polyominoes. 

Supposing that A and B are polyominoes, we define the A+B as a new polyomino like C that 

satisfies the sum condition in 𝑍2 . If two polyominoes do not have overlapping sections, then 

we show the assembly of them as a one polyomino which will be a representation of their 

sum but if they overlap, then the full and empty squares sum like 1 and 0 in 𝑍2 . In an 

overlapping situation, each square must completely wear another square and the partial 

wearing of a square will not be allowed. Namely, we try to sum two polyomino like 

𝑃1 = 15𝑋1 and 𝑃2 = 13𝑋1. As their equation says, we will have a one-column polyomino 

because  𝑃1 and 𝑃2 have only one column on 𝑋1 .Thus we must sum their coefficients 

according to their overlapping squares, which show their places by a power of 2 as follow: 

 

15 + 13 =  23 + 22 + 21 + 20 +  23 + 22 + 20 = 

 23 + 23 +  22 + 22 +  20 + 20 + 21 = 0 + 0 + 0 + 2 = 2 

Then 𝑃1 + 𝑃2 = 15𝑋1 + 13𝑋1 = 2𝑋1 

(According to this new sum method, we write a binary expansion of two numbers first of all, 

then we take 0, the sum of the same powers that exist in each number expansion and then 

write the reminders and add them.) 

The multiplication of Ω = 2𝑋1 + 7𝑋2 + 4𝑋3and 𝜇 = 6𝑋1 + 3𝑋2 + 𝑋3  will be defined by  

Ω𝜇 = Ω 𝜇  which means that instead of each square of  ,we will put the convex hull of 𝜇 .  



We show the Ω𝜇 and 𝜇𝛺 formally as follow: 

 

 

For Ω𝜇 : 

 

 

And for 𝜇𝛺: 

 

 

We have  Ω𝜇 ≠ 𝜇𝛺 . Another important point that exists in any multiplication like  Ω𝜇 , is 

that the 𝜇  (or its convex hull) is placed in the womb of . Also we could say that Ω𝜇 is tiled 

with 𝜇 (or its convex hull) as well as tiled with squares. Therefore if we have  𝑃 = 𝑝1𝑝2𝑝3 …𝑝𝑘  

we can say that each 𝑝𝑖  is inside of  𝑝𝑖−1  (telescoping property) and also a 𝑃 tiled with each 

𝑝𝑖  (or its convex hull). The explanations above contain important points which will be used 

in the final part for the proof of the conjecture and the same method will be used. By 

various juxtapositions of squares, the convex hull's shape could be a square or rectangle.    

If 𝜙 = Ω𝜇, then: 

𝜙 = 48𝑋1 + 24𝑋2 + 8𝑋3 + 438𝑋4 + 219𝑋5 + 73𝑋6 + 822𝑋7 + 192𝑋8 + 64𝑋9 

 



The following picture shows the shape of𝜙 = Ω𝜇 : 

 

 

 

 

 

 We say that  is divisible to 𝜇 if there is a polyomino like 𝜓 so that Ω = 𝜇𝜓 ,then we can 

write Ω 𝜇 = 𝜓.  

Note: without loss of generality, the index and power of each variable can be replaced with 

each other and following this method, the equation Ω = 2𝑋1 + 7𝑋2 + 4𝑋3  can reform to a 

new equation like  Ω = 2𝑋1
 + 7𝑋2 + 4𝑋3  . Thus we denoted a polyomino by a polynomial 

and also, we can extend the equation to  Ω(𝑥) = 2𝑥1
 + 7𝑥2 + 4𝑥3 . This fact describes a 

correspondence between polyominoes and polynomials.  

Now, it  is time to perform the application of what has been designed. 

 

 

 



3. Application of Polyominoes 

Goldbach conjecture:  Any even number can be written as the sum of two prime 

numbers. 

To simplifying our expressions, we will put “2n is a GB” instead of “we can write 2n as the 

sum of two prime numbers” and also "CH" instead of "convex hull" and finally a polyomino 

with n squares will be shown by 𝑃𝑛  . 

Proof: Now, we investigation the conjecture in the set of polyominoes which as a result, the 

Goldbach conjecture will change to the new proposition. On the other hand, we must prove 

that "any 𝑃2𝑛  can be written as the sum of two concavo polyomino " or"𝑃2𝑛  is a GB". 

Repeating this procedure and modifying the latter proposition by preserving the main 

properties and concepts, we will have the following proposition: 

"If for some CH the 𝑃2𝑛   be a GB, then for all of the squares, 𝑃2𝑛  is a GB" 

The sufficient tools to prove the latest proposition are now available. 

Suppose that 𝑃2𝑛  is a GB and we try to prove that  𝑃2(𝑛+1) is a GB. If n+1 is a prime, then 

nothing else remains to be proven. So we assume that n+1 is a composite. That is:                 

2 𝑛 + 1 = 2𝑞1𝑞2 …𝑞𝑘  where each 𝑞𝑖   (i=1, 2,…, k) is a factor of n+1. Then in the 

polyominoes environment, we have: 

𝑃2(𝑛+1) = 𝑃2𝑞1𝑞2…𝑞𝑘
= 𝑃2𝑃𝑞1

𝑃𝑞2
…𝑃𝑞𝑘

=𝑃2(𝑃𝑞1
(𝑃𝑞2

(…(𝑃𝑞𝑘−1
 𝐶𝐻(𝑃𝑞𝑘

) ) … ) =

𝑃2𝑃𝑞1
𝑃𝑞2

…𝑃𝑞𝑘−1
  𝐶𝐻(𝑃𝑞𝑘

) = 𝑃2𝑞1𝑞2…𝑞𝑘−1
 𝐶𝐻(𝑃𝑞𝑘

)   

On the other hand, we use of 𝑃𝑞𝑘
′𝑠 convex hull and according to the assumption (because 

2𝑞1𝑞2 …𝑞𝑘−1  < 2𝑛) the 𝑃2𝑞1𝑞2…𝑞𝑘−1
  it can be written as the sum of two concavo 

polyominoes whose squares have been replaced by the convex hull of 𝑃𝑞𝑘
(we can consider 

𝑃𝑞𝑘
 's squares formation in a manner that its CH is a bigger square. Then we will have a more 

tangible pattern). Thus, all of the squares being in 𝑃2(𝑛+1) can be written as the sum of two 

concavo polyomino or the Goldbach Conjecture is true. By a similar process, we can prove 

that any even number can be written as the minus of two prime numbers. 

Conclusion. 

After Golomb's work, these shapes have not been seriously considered, but the simplicity 

and nearness of them to numeration is always attractive. The set of polyominoes have a 

patterned structure which includes properties of the Natural numbers and an analytic 

method could help to develop it as was used for Euclidean geometry. These creatures are 

linkable to fuzzy sets, finite geometry and algebra. So these characteristics will help them 

enter technological applications. The above statements are a model that could make the 

Goldbach conjecture touchable. 
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